Lead determination in glasses by laser-induced breakdown spectroscopy.

Abstract

Laser-induced breakdown spectroscopy (LIBS) has been used to determine the lead content of different types of lead silicate glasses commercially designed as sonorous glass (which contain ∼ 10 wt.% PbO); crystal glass (with at least 24 wt.% PbO) and superior crystal glass (with at least 30 wt.% PbO). Seven different types of glass samples were selected, including historic-original, model and commercially available. The selected samples were artificially weathered under neutral, acid and alkaline attack. Analysis by LIBS was carried out in vacuum under excitation at 266 nm and results were compared with those obtained by conventional techniques used for glass characterization.

Composition of the bulk glasses was analyzed by XRF (X-ray fluorescence) and the corroded surfaces were characterized by SEM/EDX (scanning electron microscopy/energy dispersive X-ray microanalysis). A linear correlation was obtained between the intensity of selected Pb lines in the LIB spectra and the PbO content. The effect of corrosion could be characterized by comparing successive LIB spectra recorded on the same area; acid attack resulted in a decrease of PbO, CaO and Na2O content in the surface with respect to the bulk of the sample, while minor changes in the composition were noticed under alkaline attack. These results show LIBS as a useful technique to classify the different types of lead glasses by their lead content and to determine and asses the degree and type of corrosion.

Citation

Carmona, N., Oujja, M., Gaspard, S., García-Heras, M., Villegas, M.A. and Castillejo, M., 2007. Lead determination in glasses by laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(2), pp.94-100.

Redirect to full article: Click Here

Categories: Photonics & Optoelectronics, Material & Chemical

Related Components