Interfacial Surface Modification via Nanoimprinting to Increase Open-Circuit Voltage of Organic Solar Cells.

11 November 2017

Abstract

The low-cost patterning of poly(3,4-ethylenedioxythiophene) poly(4-styrenesulfonate) (PEDOT:PSS) interfacial layers inserted between indium tin oxide and poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid ester blends leads to an improvement in organic photovoltaics (OPV) device performance. Significantly, improvements in all device parameters, including the open-circuit voltage, are achieved. The nanoimprinted devices improved further as the pattern period and imprinting depth was reduced from 727 nm and 42 nm to 340 nm and 10 nm, respectively.

A residue of poly(dimethylsiloxane) (PDMS) is found on the interfacial PEDOT:PSS film following patterning and can be used to explain the increase in OPV performance. Ultraviolet photoelectron spectroscopy measurements of the PEDOT:PSS interfacial layer demonstrated a reduction of the work function of 0.4 eV following nanoimprinting which may originate from chemical modification of the PDMS residue or interfacial dipole formation supported by x-ray photoelectron spectroscopy analysis.

Ultimately, we have demonstrated a 39% improvement in OPV device performance via a simple low-cost modification of the anode interfacial layer. This improvement can be assigned to two effects resulting from a PDMS residue on the PEDOT:PSS surface: (1) the reduction of the anode work function which in turn decreases the hole extraction barrier, and (2) the reduction of electron transfer from the highest occupied molecular orbital of PCBM to the anode.

Citation

Emah, J.B., George, N.J. and Akpan, U.B., 2017. Interfacial Surface Modification via Nanoimprinting to Increase Open-Circuit Voltage of Organic Solar Cells. Journal of Electronic Materials, pp.1-10.

Redirect to full article: Click Here

Share this:

Category: Solar & Photovoltaics

Related Components