Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework.

11 November 2017

Abstract

Metal–organic frameworks (MOFs) have emerged as an exciting class of porous materials that can be structurally designed by choosing particular components according to desired applications. Despite the wide interest in and many potential applications of MOFs, such as in gas storage, catalysis, sensing and drug delivery, electrical semiconductivity and its control is still rare.

The use and fabrication of electronic devices with MOF-based components has not been widely explored, despite significant progress of these components made in recent years. Here we report the synthesis and properties of a new highly crystalline, electrochemically active, cobalt and naphthalene diimide-based MOF that is an efficient electrical semiconductor and has a broad absorption spectrum, from 300 to 2500 nm.

Its semiconductivity was determined by direct voltage bias using a four-point device, and it features a wavelength dependant photoconductive–photoresistive dual behaviour, with a very high responsivity of 2.5 × 105 A W−1.

Citation

Castaldelli, E., Jayawardena, K.I., Cox, D.C., Clarkson, G.J., Walton, R.I., Le-Quang, L., Chauvin, J., Silva, S.R.P. and Demets, G.J.F., 2017. Electrical semiconduction modulated by light in a cobalt and naphthalene diimide metal-organic framework. Nature Communications, 8(1), p.2139.

Redirect to full article: Click Here

Categories: Solar & Photovoltaics

Related Systems