Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils.

11 November 2014

Abstract

ITO/ZnO/CdS/CdTe/Mo solar cells have been grown in the substrate configuration by a combination of close-space sublimation and RF sputtering. A peak efficiency of 8.01% was achieved. A two stage CdCl2 annealing process was developed, with the first stage contributing to CdTe doping and the second being linked to CdTe/CdS interdiffusion by secondary ion mass spectrometry analysis. The inclusion of a ZnO layer between CdS and ITO layers improved performance significantly (from η=6% to η=8%) by increasing the shunt resistance, RSH, from 563 Ω cm2 to 881 Ω cm2.

Cross-sectional scanning electron microscopy highlighted the importance of the resistive ZnO layer as numerous pinholes and voids exist in the CdS film. Solar cell performance was also investigated as a function of CdTe thickness, with optimal thicknesses being in the range 3–6 μm. All devices were deemed to be limited principally by a non-Ohmic back contact, the Schottky barrier height being determined to be 0.51 eV by temperature dependent J–V measurements. Modelling of device performance using SCAPS predicted efficiencies as high as 11.3% may be obtainable upon formation of an Ohmic back-contact.

SCAPS modelling also demonstrated that a quasi-Ohmic back-contact may be achievable via inclusion of a highly p-doped (~1018 cm−3) buffer layer, between CdTe and Mo, which also has an optimal electron affinity (4.2 eV). The evaluation of device processing and the in-depth characterisation presented here provides a number of insights towards the continued improvement of substrate cell performance.

Citation

Williams, B.L., Major, J.D., Bowen, L., Phillips, L., Zoppi, G., Forbes, I. and Durose, K., 2014. Challenges and prospects for developing CdS/CdTe substrate solar cells on Mo foils. Solar Energy Materials and Solar Cells, 124, pp.31-38.

Redirect to full article: Click Here

Categories: Solar & Photovoltaics

Related Systems